Среднее арифметическое чисел. Мода. Медиана. Размах ряда чисел

Классификация показателей вариации

  1. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия и среднеквадратическое отклонение. Вторая группа показателей вычисляется, как отношение абсолютных показателей к средней арифметической (медиане).
  2. Относительными показателями вариации являются коэффициенты осцилляции, вариации, относительное линейное отклонение и др.
ПоказательФормула
Средняя арифметическая простая
Средняя арифметическая взвешенная
Средняя гармоническая простая
Средняя гармоническая взвешенная
Мода
Медиана
Размах вариацииR=Xmax-Xmin
Среднее линейное отклонение;
Дисперсия, Var(x);
Среднее квадратическое отклонение
Коэффициент вариации
Коэффициент осцилляции
Линейный коэффициент вариации

Видео

Медиана

Медиана – число, характеризующее выборку, т.е. если взять все элементы множества, то это число ровно делит множество пополам. Одна половина множества равна или больше этого число, а другая меньше или равна этому числу.

Объясним это на примере. Допустим, дано следующее множество: $\{2, 5, 10, 8, 7\}$. Здесь число $7$ делит это множество пополам. $2$ и $5$ меньше, а $10$ и $8$ больше этого числа. Для удобства нахождения медианы сначала нужно отсортировать выборку в возрастающем или убывающем порядке $\{2, 5, 7, 8, 10\}$. Тогда элемент, стоящий ровно посередине, будет медианой. Как видите, это число $7$.

А как быть, если во множестве четное количество чисел? Например $\{2, 5, 6, 8, 10, 15\}$. Тогда берем среднеарифметическое значение двух чисел, которые стоят посередине. У нас эти числа $6$ и $8$. Значит $(6+8):2=14:2=7$. Среднее значение этих двух чисел, а значит медиана равна $7$.

Пример из практики

Допустим, в стране $1\%$ взрослого населения зарабатывает $1$ млн. у.е. в год (может быть больше, но для примера ограничимся этим числом), $10\%$ населения зарабатывает по $20,000$ у.е. в год. Остальные живут за чертой бедности, зарабатывая всего $100$ у.е. в год. Тогда, несмотря на большие заработки $11\%$ населения, медиана все равно будет равна $100$ у.е. Потому что подавляющее большинство получает всего $100$ у.е. в год. Теперь вычислим среднее значение.

$1\%$ получает $1,000,000$ у.е. = $1 \cdot 1,000,000 = 1,000,000$ у.е. $10\%$ получают $20,000$ у.е. = $10 \cdot 20,000 = 200,000$ у.е. $89\%$ получают $100$ у.е. = $89 \cdot 100 = 8,900$ у.е.

Значит, среднее значение в год составляет

$(1,000,000 + 200,000 + 8,900) : 100 = 1,208,900 : 100 = 12,089$ у.е.

Зная соотношение неработающих людей, на каждого работающего, и поделив полученное на это число, получим доход на душу населения (с учетом детей, стариков и больных без пенсии).

Итак, такая статистика показывает, что народ живет припеваючи, зарабатывая примерно 1,000 у.е. в месяц, а действительность другая. Как раз, так и вычисляется доход на душу населения. Берется национальный доход и делится на численность населения. Теперь вы понимаете, почему в сводках всегда называют эту цифру, потому что она никоим образом не отображает благосостояние большинства, а только является показателем экономического благосостояния страны.

Медиана выборки

Иногда, например, при расчете средней зарплаты, среднее арифметическое не вполне адекватно отражает ситуацию. Это происходит из-за наличия в выборке чисел, очень сильно отличающихся от среднего. Так, из-за огромных зарплат некоторых начальников большинство рядовых сотрудников компаний обнаруживают, что их зарплата ниже средней. В таких случаях целесообразно использовать такую характеристику, как медиану ряда. Это такое значение, которое делит ряд данных пополам. В упорядоченном ряде 2, 3, 6, 8, 8, 12, 15, 15, 18, 19, 25 медианой будет равна 12, так как именно она находится в середине ряда:

Однако таким образом можно найти только медиану ря

Однако таким образом можно найти только медиану ряда, в котором находится нечетное количество чисел. Если же их количество четное, то за медиану условно принимают среднее арифметическое двух средних чисел. Так, для ряда 2, 3, 6, 8, 8, 12, 15, 15, 18, 19, 25, 30, содержащего 12 чисел, медиана будет равна среднему значению 12 и 15, которые занимают 6-ое и 7-ое место в ряду:

Вернемся к примеру с математическим тестом в школе

Вернемся к примеру с математическим тестом в школе. Так как его сдавали 20 учеников, а 20 – четное число, то для расчета медианы следует найти среднее арифметическое 10-ого и 11-ого числа в упорядоченном ряде

12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 24, 25, 25.

Эти места занимают числа 17 и 17 (выделены жирным шрифтом). Медиана ряда будет равна

(17+17):2 = 34:2 = 17.

Три приведенные основные статистические характеристики выборки, а именно среднее арифметическое, мода и медиана, называются мерами центральной тенденции. Они позволяют одним числом указать значение, относительно которого группируются все числа ряда.

Рассмотрим для наглядности ещё один пример. Врач в ходе диспансеризации измерил вес мальчиков в классе. В результате он получил 10 значений (в кг):

39, 41, 67, 36, 60, 58, 46, 44, 39, 69.

Найдем среднее арифметическое, размах, моду и медиану для этого ряда.

Решение. Сначала перепишем ряд в упорядоченном виде:

36, 39, 39, 41, 44, 46, 58, 60, 67, 69.

Так как в ряде 10 чисел, то объем выборки равен 10. Найдем среднее арифметическое. Для этого сложим все числа в ряде и поделим их на объем выборки (то есть на 10):

(36+39+39+41+44+46+58+60+67+69):10 =

= 499:10 = 49,9 кг.

Размах выборки равен разнице между наибольшей и наименьшей вариантой в ней. Самый тяжелый мальчик весит 69 кг, а самый легкий – 36 кг, а потому размах ряда равен

69 – 36 = 33 кг.

В упорядоченном ряде только одно число, 39, встречается дважды, а все остальные числа встречаются по одному разу. Поэтому мода ряда будет равна 39 кг.

В выборке 10 чисел, а это четное число. Поэтому для нахождения медианы надо найти два средних по счету значение найти их среднее. На 5-ом и 6-ом месте в ряде находятся числа 44 и 46. Их среднее арифметическое равно

(44+46):2 = 90:2 = 45 кг.

Поэтому и медиана ряда будет равна 45 кг.

Бимодальное распределение

Если вы работаете со средними, остерегайтесь бимодального распределения. Во многих наборах данных — биологических, физических, социальных — у распределения может быть два или больше пиков.

Например, подобный график может отображать сумму, потраченную на обеды в неделю (ось X), и количество людей, потративших такую сумму (ось Y). Представьте, что вы изучали две группы людей: детей (левый горб) — они покупают школьные обеды — и руководителей компаний (правый горб) — они ходят в дорогие рестораны.

Среднее арифметическое и медиана в данном случае — это числа где-то между этими двумя горбами, и они ничего не скажут о том, что происходит на самом деле, — ведь во многих случаях среднее арифметическое и медиана отражают ту сумму, которую никто не тратит. Подобный график говорит лишь о том, что в вашем примере имеет место неоднородность — вы сравниваете яблоки с апельсинами. В таком случае лучше сразу сказать, что вы имеете дело с бимодальным распределением, и сообщить о двух модах. А еще лучше разделить группу на две подгруппы и собрать статистические данные для каждой.

Размах, полученный из процентилей

Что такое процентили

Предположим, что мы расположим наши данные упорядоченно от самой маленькой величины перемен­ной X и до самой большой величины. Величина X, до которой расположен 1% наблюдений (и выше которой расположены 99% наблюдений), называется первым процентилем.

Величина X, до которой находится 2% наблюдений, называется 2-м процентилем, и т. д.

Величины X, которые делят упорядоченный набор значений на 10 равных групп, т. е. 10-й, 20-й, 30-й,…, 90 и процентили, называются децилями. Величины X, которые делят упорядоченный набор значений на 4 равные группы, т.е. 25-й, 50-й и 75-й процентили, называются квартилями. 50-й процентиль — это ме­диана.

Применение процентилей

Мы можем добиться такой формы описания рас­сеяния, на которую не повлияет выброс (аномальное значение), исключая экстремальные величины и определяя размах остающихся наблюдений.

Межквартильный размах — это разница между 1-м и 3-м квартилями, т.е. между 25-м и 75-м процентилями. В него входят центральные 50% наблюдений в упорядоченном наборе, где 25% наблюдений находятся ниже центральной точки и 25% — выше.

Интердецильный размах содержит в себе центральные 80% наблюдений, т. е. те наблю­дения, которые располагаются между 10-м и 90-м процентилями.

Мы часто используем размах, который содержит 95% наблюдений, т.е. он исключает 2,5% наблюдений снизу и 2,5% сверху. Указание такого интервала актуально, например, для осуществления диагностики болезни. Такой интервал называется референтный интервал, референтный размах или нормальный размах.

Упорядоченный ряд и таблица частот

В ряде данных в таблице 1 числа приведены в произвольном порядке. Перепишем ряд так, чтобы все числа шли в неубывающем порядке, то есть от самого маленького к самому большому:

12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 24, 25, 25.

Такую запись называют упорядоченным рядом данных.

Его характеристики ничем не отличаются от изначаль

Его характеристики ничем не отличаются от изначальной выборки, однако с ним удобнее работать. С его помощью можно видеть, что ни одному ученику не удалось набрать 22 или 23 балла на тесте, но сразу двое учащихся дали 25 правильных ответов. На основе упорядоченного ряда данных несложно составить таблицу частот, в которой будет указано, как часто та или иная варианта выборки встречается в ряде. Выглядеть она будет так:

При составлении этой таблицы мы исключили из нее т

При составлении этой таблицы мы исключили из нее те варианты количества набранных баллов, частота которых равна нулю (от 0 до 12, 22 и 23).Заметим, что сумма чисел в нижней строке таблицы частот должна равняться объему выборки. Действительно,

2+3+1+1+2+2+1+2+2+1+1+2 = 20.

С помощью таблицы частот можно быстрее посчитать среднее арифметическое выборки. Для этого каждую варианту надо умножить на ее частоту, после чего сложить полученные результаты и поделить их на объем выборки:

(12•2+13•3+14•1+15•1+16•2+17•2+18•1+19•2+20•2+21•1+24•1+25•2):20 =

(24+39+14+15+32+34+18+38+40+42+24+50):20 = 349:20 = 17,45.

Среднее геометрическое

При несимметричном распределении данных сред­нее арифметическое не будет обобщающим показа­телем распределения.

Если данные скошены вправо, то можно создать более симметричное распределе­ние, если взять логарифм (по основанию 10 или по основанию е) каждого значения переменной в наборе данных. Среднее арифметическое значений этих логарифмов — характеристика распределения для преобразованных данных.

Чтобы получить ме­ру с теми же единицами измерения, что и первона­чальные наблюдения, нужно осуществить обратное преобразование — потенцирование (т. е. взять анти­логарифм) средней логарифмированных данных; мы называем такую величину среднее геометрическое.

Если распределение данных логарифма приблизитель­но симметричное, то среднее геометрическое подобно медиане и меньше, чем среднее необработанных дан­ных.

Медиана

Медиана — середина — уровень показателя, который делит набор данных на 2 равные половины (50/50). Она не присваивает наблюдениям весовые коэффициенты исходя из того, на сколько они отдалены от средней точки, а лишь оценивает их в зависимости от расположения.

Развивая мысль можно также делить медиану на четверти — квартили:

  • 0,25 квантиль — первый (нижний) квартиль;
  • 0,5 квантиль — медиана — второй квартиль;
  • 0,75 квантиль — третий (верхний) квартиль.

Еще один вариант разделить на децили, каждый из которых включает в себя 10% наблюдений. Например, если ваш расход топлива бензинового двигателя автомобиля в верхнем дециле общего распределения расходов топлива всех бензиновых двигателей, то это означает, ваш двигатель сжигает топлива больше, чем 90% остальных двигателей.

Разбив распределение на сотые доли получим процентили — 1% распределения: первый процентиль представляет нижний 1% данного распределения, а 99-й — его верхний 1%.

Рассмотрим набор нормально распределенных случайных чисел.

В данном примере видим идеальную ситуацию когда медиана, среднее арифметическое и мода совпадают. Но, если рассмотреть ассиметричное распределение,  которое может возникать при проведении технических замеров, например, скорости, может сложиться такая ситуация

Как видим из графика у нас присутствуют аномальные значения («отщепенцы»): 23, 28, 30, влияющие на среднее арифметическое, но никак не затрагивающие медиану.

Медиана — альтернатива среднему арифметическому, устойчивая к аномальным отклонениям («отщепенцам»).

Теги

Adblock
detector