АКСИОМА • Большая российская энциклопедия

Значение слова «аксиома» в словарях русского языка

Аксиома это:

Аксио́ма ( «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.

Википедия

Аксиома

ж. 1. Положение какой-либо научной теории, принимаемое без доказательств в силу непосредственной убедительности. 2. Неоспоримая, бесспорная, не требующая доказательств истина.

Большой современный толковый словарь русского языка

Аксиома

(гр. axioma) 1) отправное, исходное положение какой-л. теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательства; 2) перен. бесспорная, не требующая доказательств истина.

Новый словарь иностранных слов

Аксиома

ж. 1) Исходное положение какой-л. научной теории, принимаемое без доказательств. 2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.

Новый толково-словообразовательный словарь русского языка Ефремовой

Аксиома

жен. , греч. очевидность, ясная по себе и бесспорная истина, не требующая доказательств, напр. целое всегда, больше части своей; основная истина, самоистина, ясноистина.

Словарь Даля

Аксиома

[гр. axioma] 1. отправное, исходное положение какой-л. теории, лежащее в основе доказательств других положений этой теории, в пределах которой оно принимается без доказательства; 2. * бесспорная, не требующая доказательств истина.

Словарь иностранных выражений

Аксиома

положение, принимаемое без доказательств Lib аксиома исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений Spec

Словарь русского языка Ожегова

Аксиома

(греч. axioma), положение, принимаемое без логического доказательства в силу непосредственной убедительности; истинное исходное положение теории.

Современный толковый словарь, БСЭ

Аксиома

аксиома ж. 1) Исходное положение какой-л. научной теории, принимаемое без доказательств. 2) перен. Неоспоримое, бесспорное положение, очевидная истина, не требующая доказательств.

Толковый словарь Ефремовой

Видео

Философский словарь (Конт-Спонвиль)

аксиома

 Аксиома  ♦ Axiome Недоказуемое положение, служащее для доказательства других положений. Являются ли аксиомы истинными? Долгое время считалось, что являются. По мнению Спинозы или Канта, аксиома – это истина, очевидность которой ясна без доказательств, а потому и не нуждается в них. Современные математики и логики склонны рассматривать аксиомы как чистые конвенции или гипотезы, которые не могут быть очевидными истинами. Отныне истина заключается не в самих положениях (если аксиома не есть истина, ни одна теорема не может быть истинной), а в объединяющих их отношениях импликации или дедукции. Следовательно, аксиом в традиционном понимании термина не существует, есть лишь постулаты (Постулат). Но и это заявление – постулат, а не аксиома.

Педагогический терминологический словарь

аксиома

(греч. axioma) бесспорная истина, не требующая доказательств. В педагогике наиболее известны А. апперцепции и А. двойственности. А. апперцепции (см. Апперцепция) констатирует зависимость всех последующих восприятий от содержания и структуры предшествующего опыта. В этой А. отражено то фундаментальное положение, что одно и то же воздействие производит несходное впечатление на разных людей из-за заведомых различий в их индивидуальном опыте. А. апперцепции объясняет сложность, мучительность внутренней работы, содержанием которой становится переоценка ценностей. А. двойственности позволяет рассматривать и интерпретировать личность как единство психического и физического, материального и идеального в их историческом развитии и внутренней противоречивости. Человеческая природа одновременно духовна и материальна. В человеческой психике обнаруживается наличие и взаимодействие обоих начал. А. орудийно-знакового опосредования процесса усвоения культуры в ходе воспитания фиксирует тот факт, что обучать и воспитывать можно только посредством знаковых систем и через предметы, созданные человеком для человека. (Бим-Бад Б.М. Педагогический энциклопедический словарь. — М., 2002. С. 14)

История аксиомы

Аксиоматический метод появился в древней Греции. Термин аксиома встречается у древнегреческих философов Аристотеля (384–322 гг. до н. э.) и Евклида (325–265 гг. до н. э.).

Аксиомы Евклида

Самой известной аксиомой Евклида была аксиома о параллельных прямых. Он сформулировал её в своей книге «Начала».

Аксиома звучит так: через любую точку, которая расположена вне данной прямой, можно провести только одну прямую параллельную данной.

Т. е. если дана прямая и любая точка (которая не лежит на этой прямой), то через неё можно провести только одну единственную прямую, которая будет параллельна этой первой данной прямой.

Следствия из аксиомы

У этой аксиомы два следствия:

  • прямая, пересекающая одну параллельную прямую, обязательно пересечёт и другую;
  • если две прямые параллельны третьей, то между собой они также параллельны.
прямая, пересекающая одну параллельную прямую, обязательно пересечёт и другую
если две прямые параллельны третьей, то между собой они также параллельны

Аксиома Архимеда

Для отрезков: если на прямой имеются два отрезка А (меньший из них) и B, то, складывая А достаточное количество раз, можно будет покрыть больший (B).

Другими словами, Архимед утверждал, что не существуют бесконечно малые и бесконечно большие величины. В качестве математической формулы аксиому можно записать так:

где n — это натуральное число.

Понятие теоремы

Что такое аксиома мы уже поняли, теперь узнаем определение теоремы.

Теорема — логическое следствие аксиом. Это утверждение, которое основано на аксиомах и общепринятых утверждениях, которые были доказаны ранее, и доказывается на их основе.

Состав теоремы: условие и заключение или следствие.

Среди теорем выделяют такие, которые сами по себе не используются в решениях задач. Но их используют для доказательства других теорем.

Лемма — это вспомогательная теорема, с помощью которой доказываются другие теоремы. Пример леммы: если одна из двух параллельных прямых пересекает плоскость, то и вторая прямая тоже пересекает эту плоскость.

Следствие — утверждение, которое выводится из аксиомы или теоремы. Следствие, как и теорему, необходимо доказывать.

Примеры следствий из аксиомы о параллельности прямых:

  • если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую;
  • если две прямые параллельны третьей прямой, то они параллельны.

Доказательство теоремы — это процесс обоснования истинности утверждения.

Каждая доказанная теорема служит основанием доказательства для следующей теоремы. Именно поэтому так важно изучать геометрию последовательно, переходя от аксиом к теоремам.

Способы доказательства геометрических теорем

  • Синтетический или синтез — метод, при котором данное предложение выступает, как необходимое следствие другого, уже доказанного.
  • Аналитический или анализ — обратный синтезу способ. Рассуждения всегда начинаются с доказываемой теоремы и закачиваются другой известной истиной.

Часть аналитического способа — доказательство от противного, когда для доказательства данного предложения убеждают в невозможности предположения противоположного.

Приемы для доказательства в геометрии:

  • Способ наложения — когда одну геометрическую величину накладывают на другую. Этим способом убеждаются в равенстве или неравенстве геометрических протяжений в зависимости от того, совмещаются они или нет при наложении.
  • Способ пропорциональности — применение свойств пропорций. Этот способ пригодится для доказательства теорем про подобные фигуры и пропорциональные отрезки.
  • Способ пределов — когда вместо данной величины берут свойства другой, близкой к ней. А потом перекладывают эти выводы на исходные данные.

Обратная теорема — это такой перевертыш: в ней условие исходной теоремы дано заключением, а заключение — условием.

Прямая и обратная теорема взаимно-обратные. Например:

  • прямая теорема: в треугольнике против равных сторон лежат равные углы.
  • обратная теорема: в треугольнике против равных углов лежат равные стороны.

В первой теореме данное условие — это равенство сторон треугольника, а заключение — равенство противолежащих углов. А во второй всё наоборот.

Противоположная теорема — это утверждение, в котором из отрицания условия вытекает отрицание заключения.

Вот, как выглядит взаимное отношение теорем на примере:

  • Прямая: если при пересечении двух прямых третьей соответственные углы равны, то данные прямые параллельны.
  • Обратная: если две прямые параллельны, то при пересечении их третьей, соответственные углы равны.
  • Противоположная: если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.
  • Обратная противоположной: если прямые не параллельны, соответственные углы не равны.

В геометрическом изложении достаточно доказать только две теоремы, тогда остальные справедливы без доказательства.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Понятия свойств и признаков

У нас есть список аксиом и мы уже знаем, что такое теорема и как ее доказывать. Есть два типа утверждений среди теорем, которые часто встречаются при изучении новых фигур: свойства и признаки.

Свойства и признаки — понятия из обычной жизни, которые мы часто используем.

Свойство — такое утверждение, которое должно выполняться для данного типа объектов. У ноутбука есть клавиатура — это свойство есть у каждого ноутбука. А у электронной книги такого свойства нет.

Примеры геометрических свойств мы уже знаем: у квадрата все стороны равны. Это верно для любого квадрата, поэтому это — свойство.

Такое свойство можно встретить у другого четырехугольника. И клавиатура может быть на других устройствах, помимо ноутбука. Из этого следует, что свойства не обязательно должны быть уникальными.

Признак — это то, по чему мы однозначно распознаем объект.

Звезды в темном небе — признак того, что сейчас ночь. Если человек ходит с открытым зонтом — это признак того, что сейчас идет дождь. При этом ночью не обязательно должны быть видны звезды, иногда может быть облачно. Значит это не свойство ночи.

А теперь вернемся к геометрии и рассмотрим четырехугольник ABCD, в котором AB = BD = 10 см.

Является ли равенство диагоналей признаком прямоугольника? У такого четырехугольника, где AB = BD, диагонали равны, но он не является прямоугольником. Это свойство, но не его признак.

Но если в четырехугольнике противоположные стороны

Но если в четырехугольнике противоположные стороны параллельны AB || DC и AD || BC и диагонали равны AB = BD, то это уже верный признак прямоугольника. Смотрите рисунок:

Иногда свойство и признак могут быть эквивалентны.

Иногда свойство и признак могут быть эквивалентны. Лужи — это верный признак дождя. У других природных явлений не бывает луж. Но если приходит дождь, то лужи на асфальте точно будут. Значит, лужи — это не только признак, но и свойство дождя.

Такие утверждения называют необходимым и достаточным признаком.

Теги

Adblock
detector