Содержание материала
Происхождение
Кометы являются остатками образования планет. Предполагается, что они прилетают из облака Оорта – области за поясом Койпера, достигающего межзвездного пространства до 40-150 тыс. а.е. Миллиарды этих космических тел или только их ядра могут там находиться. Из-за гравитационных возмущений звезд ядра иногда выбрасываются внутрь Солнечной системы.
Из-за испарения под влиянием Солнца с поверхности, кометы теряют массу, чем ближе к звезде – тем сильнее. Средняя продолжительность жизни типичного объекта составляет около 100 циклов, пока он окончательно не распадется. Некоторые метеорные потоки можно считать распадающимися «хвостатыми звездами».
Движение комет по орбите
К. движутся по орбитам с большим эксцентриситетом и наклонением к плоскости эклиптики. Движение происходит и в прямом (как у планет), и в обратном направлении. К. испытывают сильные приливные возмущения при прохождении вблизи планет, что приводит к существенному изменению их орбит (и, соответственно, сложностям прогноза движений К. и точного определения эфемерид). Вследствие этих изменений орбит многие К. выпадают на Солнце.
Результаты вычислений элементов орбит К. публикуются в спец. каталогах; напр., каталог, составленный в 1997, содержит орбиты 936 К., св. 80% которых наблюдалось только один раз. В зависимости от положения на орбите блеск К. изменяется на неск. порядков, достигая максимума вскоре после прохождения перигелия и минимума в афелии. Абсолютная звёздная величина К. в первом приближении обратно пропорциональна R4, где R – расстояние от Солнца. Как правило, короткопериодич. К. обращаются вокруг Солнца не более нескольких сотен раз. Поэтому время их жизни ограничено и обычно не превышает 100 тыс. лет.
Активная фаза существования К. заканчивается, когда исчерпывается запас летучих веществ в ядре или поверхность ядра К. покрывается оплавленной пылеледяной коркой, возникающей вследствие многократных сближений К. с Солнцем. После окончания активной фазы ядро К. по своим физич. свойствам становится подобным астероиду, поэтому резкой границы между астероидами и К. нет. Более того, возможен и обратный эффект: астероид может начать проявлять признаки кометной активности при растрескивании его поверхностной корки по тем или иным причинам.
Рис. 2. Выпадение на Юпитер фрагментов кометы Шумейкеров – Леви 9 (1994).
Нерегулярность орбит К. приводит к плохо прогнозируемой вероятности их столкновений с планетами, что дополнительно усложняет проблему астероидно-кометной опасности. Столкновением Земли с осколком ядра К., возможно, было вызвано тунгусское событие 1908 (см. Тунгусский метеорит). В 1994 наблюдалось выпадение на Юпитер (рис. 2) более 20 фрагментов К. Шумейкеров – Леви 9 (разорванной в ближайшей окрестности планеты приливными силами), что привело к катастрофич. явлениям в атмосфере Юпитера.
Видео
Направление хвоста комет
Пыль и пар создают два отдельных хвоста, но направлены они обычно примерно в одну сторону. Оба хвоста всегда направлены в сторону от Солнца, но заряженные частицы сильнее реагируют на магнитное поле и солнечный ветер, что делает его направленным точно в обратную сторону от звезды. Частицы пыли меньше подвержены подобному влиянию, поэтому направление пылевого хвоста искривляется в зависимости от орбиты кометы.
Интересный факт: в 2009 году космический зонд НАСА взял образец из кометы Вильда-2 и ученые обнаружили, что он содержит аминокислоту глицин — важнейший элемент для зарождения жизни. Недавнее исследование показало, что на Землю могла упасть комета, принеся до 9 триллионов органических материалов, обеспечив тем самым необходимую энергию и материалы для синтеза более серьезных молекул, впоследствии создавшие жизнь.История изучения комет
В древности люди, привыкшие любым явлениями придавать мифологический и божественный характер не прошли стороной и странные светящиеся полосы в небе, иногда проскальзывающие в ночи. Некоторые называли их душами умерших.
Но время шло и ученая мысль развивалась. Первым, кто заявил, что кометы это светящийся газ, был Аристотель. За ним уже Сенека предположил, что эти загадочные небесные объекты имеют свои орбиты.
Кометы движутся по орбите, поэтому возвращаются вновь и вновь в поле зрения астрономов. Выдвигались теории о вытянутых эллиптических орбитах, но эти теории не находили всеобщего признания и подтверждения вплоть до 18 века. Первая же такая гипотеза была выдвинута немецким ученым Георгом Дерффелем в 1681 году. Исаак Ньютон же спустя всего 6 лет после публикации работы своего предшественника, попробовал объяснить ее, представив всему миру свои гениальные законы гравитации. Ньютон также заявил, что кометы представляют из себя каменистые объекты, содержащие лед, испаряющийся по мере приближения к Солнцу, создавая тем самым хвост.
В 1705 году Эдмунд Галлей изучил все задокументированные появления комет и попытался определить параметры их орбит, используя ньютоновскую физику. Это привело его к теории о том, что кометы 1531, 1607 и 1682 годов были фактически одним и тем же объектом, который появится через 75 лет после его последнего появления. Галлей стал первым человеком, который смог успешно предсказать возвращение кометы — она появилась, точно согласно его вычислениям, в 1759 году. Тогда же она и получила название — комета Галлея.
Связь же между метеоритными дождями и кометами была доказана в конце 19-го века, когда итальянский астроном Джованни Скиапарелли выдвинул свою гипотезу относительно метеоритного потока Персеид, заметного невооруженным глазом каждый август. Его систематическое появление вызвано тем, что Земля проходит через облако обломков, которые оставила после себя комета Свифта-Таттла. Эта теория позволила ученому миру заключить, что кометы имеют твердую поверхность, которая покрыта слоем льда.
Интересно: Кольца Юпитера — интересные факты, фото и видео
В 1950-х американский астроном Фред Лоуренс Уиппл предположил, что кометы на самом деле состоят из большего количества льда, чем камня, и содержат замороженную воду, углекислый газ и аммиак. Теория Уиппла была подтверждена наблюдениями космических аппаратов, запущенных во второй половине века.
Интересный факт: на протяжении многих лет кометы интерпретировались как признаки надвигающейся гибели или предвестники удачи. Римский император Нерон думал, что комета предвещает его убийство, и поэтому он убил всех своих живых преемников. Папа Калликст III фактически пытался отлучить от церкви комету Галлея, полагая, что это агент дьявола. Уильям Завоеватель считал комету хорошим предзнаменованием перед его вторжением в Англию в 1066 году.Характеристики комет
Условно комету можно разделить на три части — ядро, кома, хвост. Всё в кометах абсолютно холодное, а свечение их — лишь отражение солнечного света пылью и свечение ионизированного ультрафиолетом газа.
Ядро
Ядро — самая тяжелая часть этого небесного тела. В нем сосредоточена основная масса кометы. Состав ядра кометы точно изучить довольно нелегко, так как на расстоянии, доступном телескопу, оно постоянно окружено газовой мантией. В связи с этим за основу теории о составе ядра кометы принята теория американского астронома Уипла.
По его теории ядро кометы представляет собой смесь замороженных газов с примесью различной пыли. Поэтому, когда комета приближается к Солнцу и нагревается, газы начинают «таять», образуя хвост. Однако есть и другие предположения о составе ядра.
Одно из них утверждает, что комета имеет рыхлую структуру из пыли с очень большими порами — этакая космическая «губка». «Губка» невероятно хрупка: если взять даже очень большой кусок кометы, то можно с лёгкостью его разорвать просто руками.
Хвост
Хвост кометы — самая ее выразительная часть. Он образуется у кометы с приближением к Солнцу. Хвост представляет собой светящуюся полоску, которая тянется от ядра в противоположную от Солнца сторону, «отдуваемый» солнечным ветром. Состоит он из газов и пыли, которые испаряются с ядра кометы под действием всё того же солнечного ветра. Хвост ярко светится — благодаря ему мы и имеем возможность наблюдать полет этих небесных тел.
Орбиты и семейства
Движение вокруг Солнца осуществляется по сильно вытянутым, эллиптическим орбитам. Идеальными эти орбиты считать нельзя, потому что они испытывают гравитационное влияние планет, рядом с которыми пролетают.
По периодичности обращения вокруг нашего светила, кометы бывают двух классов: коротко- и долгопериодическими. К первому классу относятся объекты, имеющие периодичность менее 200 лет, а ко второму те, что обращаются за больший период. Известно о почти 700-х долгопериодических кометах. У 30-и из них перигелийные расстояния так малы, что их называют «царапающими» Солнце. Около шестой части обнаруженных объектов считаются новыми, поскольку попадали в поле зрения только однажды. Относительно к плоскости эклиптики, кометные орбиты имеют произвольные наклоны. Короткопериодических комет насчитывается больше 200. Их орбиты проходят рядом с плоскостью эклиптики, а сами они состоят в различных кометно-планетных семействах.
- Семейство Юпитера. Это самое большое сообщество, включающее в себя порядка 150 комет. Периодичность их от 3,3 до 20 лет. Чаще всего можно увидеть кометы: Энке, Фая, Темпеля-2, Понса-Виннеке.
- Семейство Сатурна. Это сообщество гораздо скромнее. Оно насчитывает почти 20 комет, среди которых: Тутля, Ван Бисбрука, Неуймина-1, Гейла. Время их обращения вокруг нашего светила от 10 до 20 лет.
- Семейство Урана. Периоды обращения членов этой семьи от 28 до 40 лет. Их несколько, а основные – Кроммелина и Темпеля-Туттля.
- Семейство Нептуна. Члены этого семейства обладают самой большой периодичностью, имеющей значения от 58 до 120 лет. Их около десятка, но выделяются кометы: Галлея, Понса-Брукса, Ольбертса.
Предполагается, что короткопериодические кометы когда-то имели долгий период, но планеты-гиганты оказывали на них гравитационное воздействие. Это явилось причиной изменения орбит и привязки их к орбитам конкретных планет.
Значение комет для космогонии
Происхождение К., вероятно, связано с гравитац. выбросом ледяных тел из области образования планет-гигантов (см. в ст. Космогония). Поэтому исследования К. способствуют решению фундам. проблемы происхождения и эволюции Солнечной системы. К. представляют большой науч. интерес прежде всего с точки зрения космохимии, поскольку содержат первичное вещество, из которого образовалась Солнечная система. Считается, что К. и наиболее примитивный класс астероидов (углистые хондриты) сохранили в своём составе частицы протопланетного облака и газопылевого аккреционного диска. В качестве реликтов формирования планет (планетезималей) К. претерпели наименьшие изменения в процессе эволюции. Поэтому информация о составе К. позволяет наложить достаточно строгие ограничения на диапазон параметров, используемых при разработке космогонич. моделей.
В то же время, по совр. представлениям, сами К. могли сыграть важную роль в эволюции Земли и др. планет земной группы в качестве источника летучих элементов и их соединений (в первую очередь воды). Как показали результаты математич. моделирования, за счёт этого источника Земля могла получить количество воды, сопоставимое с объёмом её гидросферы. Примерно такие же количества воды могли получить Венера и Марс, что говорит в пользу гипотезы о существовании на них древних океанов, потерянных в ходе последующей эволюции. К. рассматриваются также как возможные носители первичных форм жизни. Проблема возникновения жизни на планетах связывается, в частности, с транспортом вещества внутри и вне пределов Солнечной системы и миграционно-столкновительными процессами, ключевую роль в которых играют кометы.