Значение слова АРИФМЕТИКА. Что такое АРИФМЕТИКА?

Начала Современного Естествознания. Тезаурус

арифметика

(от греч. arithmos — число) — наука о числах и операциях над ними. Арифметика в первую очередь изучает натуральные и дробные числа и является одной из древнейших отраслей человеческого знания. В XX веке в арифметике Куртом Геделем доказана одна из наиболее значительных теорем — теорема о неполноте системы (имеющая не опровергаемый аналог в обычной логике — «я лгу»), играющая непреходящую роль в познании (см. теорема Геделя).

Умножение

Рассмотрим сначала т.н. «короткое» умножение – умножение положительного действительного числа на одно из однозначных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, например, 32,67ґ4. Пользуясь законом дистрибутивности, а также законами ассоциативности и коммутативности умножения, мы получаем возможность разбивать множители на части и располагать их более удобным образом. Например,

Эти вычисления можно записать более компактно следующим образом:

Процесс сжатия можно продолжить. Запишем множитель 4 под множимым 32,67, как указано:

Так как 4ґ7 = 28, мы записываем под чертой цифру 8, а 2 помещаем над цифрой 6 множимого. Далее, 4ґ6 = 24, что с учетом перенесенной из столбца справа дает 26. Цифру 6 мы записываем под чертой, а 2 записываем над цифрой 2 множимого. Затем мы получаем 4ґ2 = 8, что в сочетании с перенесенной двойкой дает 10. Цифру 0 мы подписываем под чертой, а единицу – над цифрой 3 множимого. Наконец, 4ґ3 = 12, что с учетом перенесенной единицы дает 13; число 13 записываем под чертой. Поставив десятичную запятую, получаем ответ: произведение равно 130,68.

«Длинное» умножение – это просто неоднократно повторенное «короткое» умножение. Рассмотрим, например, умножение числа 32,67 на число 72,4. Расположим множитель под множимым, как указано:

Производя справа налево короткое умножение, мы получаем первое частное произведение 13,068, второе – 65,34 и третье – 2286,9. По закону дистрибутивности, произведение, которое требуется найти, есть сумма этих частных произведений, или 2365,308. В письменной записи десятичная запятая в частных произведениях опускается, но их нужно правильно располагать «ступеньками», чтобы затем просуммировать и получить полное произведение. Число знаков после десятичной запятой в произведении равно сумме числа знаков после запятых в множимом и множителе.

Видео

Арифметика Нового времени

В XVII веке мореходная астрономия, механика, более сложные коммерческие расчёты поставили перед арифметикой новые запросы к технике вычислений и дали толчок к дальнейшему развитию.

Десятичная арифметика и расширение понятия числа

Значительному изменению подверглось понятие числа. Если ранее к области чисел в большинстве своём относили только положительные рациональные числа, то начиная с XVI века всё более признавались иррациональные и отрицательные числа. В «Геометрии» Декарта 1637 года устанавливается связь между арифметикой и геометрическими построениями, причём числовые величины, вопреки Евклиду, фактически лишаются размерности и отделяются от геометрии. Отношение любой величины к единичному эталону является в данном случае эквивалентом действительного числа, при этом рассуждения оставались верны как для соизмеримых, так и для несоизмеримых отрезков, последние сам Декарт называл «глухими числами» (nombres sourds). Ньютон в своих лекциях также делит числа на три вида: целые (измеряются единицей), дробные (кратные доли единицы) и иррациональные (несоизмеримые с единицей). С 1710 года такое определение числа прочно входит во все учебники.

Периодические дроби появились ещё в работе «Десятичный счёт» (Logistica decimalis) И. Г. Бейера в 1603 году. Работу над ними продолжил Валлис в «Трактате по алгебре» в 1685 году, где он определил, что для несократимой дроби p / q {displaystyle p/q} число цифр периода меньше или равно q − 1 {displaystyle q-1} . Валлис, кроме того, показал конечность дроби со знаменателем вида 2 m 5 n {displaystyle 2^{m}5^{n}} , он также знал, что невозможно иррациональные числа выразить периодическими дробями.

В начале XVII века Непер изобрёл логарифмы. Применение логарифмов и десятичных дробей, включение в арифметику понятия иррационального числа как последовательности рациональных приближений расширили область применения арифметики к концу XVII века и определили фундаментальное значение науки для изучения непрерывных величин.

В XVIII веке продолжились работы с десятичными дробями, в частности с бесконечными и периодическими десятичными дробями. Тот факт, что любая периодическая дробь является рациональным числом, а также, что любая несократимая дробь, содержащая в знаменателе отличные от двух и пяти простые делители, разлагается в периодическую, доказал в середине XVIII века Ламберт. В работе Гаусса «Арифметические исследования» с помощью теории степенных вычетов представлены более глубокие свойства периодических дробей. Вместе с тем в учебниках того времени десятичные дроби затрагиваются мимоходом или не упоминаются вовсе. Непрерывными дробями занимался Эйлер, который впервые представил приёмы преобразования бесконечных непрерывных дробей в бесконечные ряды, а затем посвятил им целую главу в первом томе своего «Введения в анализ бесконечных» в 1748 году. Эйлеру принадлежит доказательство того, что всякое рациональное число может быть представлено в виде конечной непрерывной дроби, а также, что периодическая непрерывная дробь с единицами в числителях является корнем квадратного уравнения. Обратное было доказано Лагранжем в 1768 году. В XVIII веке у Эйлера и его учеников арифметика приобретает современные формы.

Жирар и Декарт геометрически интерпретировали отрицательные числа противоположно направленными отрезками. Несмотря на то, что уже Декарт считал отрицательные корни уравнений, наряду с положительными, действительными корнями (в противовес мнимым), некоторые свойства отрицательных чисел долгое время оставались неясными. 1 сентября 1742 года Эйлер в письме Николаю I Бернулли впервые высказал утверждение, что корни любого алгебраического уравнения имеют вид a + b − 1 {displaystyle a+b{sqrt {-1}}} . В 1747 году в «Размышлениях об общей причине ветров» Даламбер показал, что ( a + b − 1 ) g + h − 1 = A + B − 1 {displaystyle (a+b{sqrt {-1}})^{g+h{sqrt {-1}}}=A+B{sqrt {-1}}} . В «Исследованиях о мнимых корнях» Эйлер тем не менее определяет мнимое число как такое, которое «ни больше нуля, ни меньше нуля, ни равно нулю», а «нечто невозможное». При этом он доказывает теорему, что всякое мнимое число образовано суммой действительного числа M {displaystyle M} и произведения действительного числа N {displaystyle N} на − 1 {displaystyle {sqrt {-1}}} . Задача решалась для отдельных функций, круг операций над мнимыми числами очерчен не был. Кроме того, были проблемы с геометрическим толкованием мнимых чисел. Первую попытку сделал Валлис, который полагал мнимые числа отрезками, перпендикулярными вещественным, затем была работа Генриха Кюна в 1753 году, в которой он считал мнимым числом сторону квадрата с отрицательной площадью. Развить определение Валлиса удалось Весселю и Аргану только на рубеже XVIII—XIX веков.

Создание и развитие теории чисел

В 30-х годах XVII века Ферма выделил теорию чисел как отдельную область арифметики, по его мнению, лишь слегка затронутую Евклидом и, возможно, Диофантом. Ферма занимался решением диофантовых уравнений и делимостью целых чисел. Он сформулировал ряд утверждений без доказательства, в частности малую и великую теоремы Ферма. Ферма не написал никакого специального труда по теории чисел, его предложения сохранились лишь в переписке, а также в виде замечаний к «Арифметике» Диофанта.

Только через 70 лет работы Ферма привлекли внимание Эйлера, который занимался теорией чисел несколько десятилетий. Ей посвящено четыре с половиной тома 30-томной математической серии Эйлера. Эйлер занимался обобщением малой теоремы Ферма, а также доказательством великой теоремы Ферма для случая n = 3 {displaystyle n=3} . Эйлер первым начал применять для задач теории чисел аппарат других разделов математики, в первую очередь математического анализа. Он сформулировал метод производящих функций, тождество Эйлера, а также задачи, связанные со сложением простых чисел.

Считается, что именно после работ Эйлера теория чисел стала отдельной наукой.

Проблемы обоснования арифметики

С работами Лобачевского по геометрии связан процесс критического пересмотра основ математики, который случился в XIX веке. Ещё в XVIII веке начались попытки дать теоретические обоснования представлениям о числе. Поначалу это касалось только арифметики натуральных чисел, для которой применялись различные аксиомы и определения, зачастую избыточные и недостаточные одновременно, во многом заимствованные из «Начал» Евклида. Также обстояло дело с основными законами арифметики: коммутативный и ассоциативный законы для умножения и сложения упоминались довольно часто, дистрибутивный закон относительно сложения для умножения — реже, а все пять законов — крайне редко. Лейбниц первый поставил задачу дедуктивного построения арифметики и, в частности, показал необходимость доказательства равенства «два плюс два равно четыре» в своих «Новых опытах о человеческом разуме» в 1705 году. В попытках решить этот вопрос свои аксиомы представили Вольф в 1770 году, Шульц в 1790 году, Ом в 1822 году, Грассман в 1861 году и, наконец, Пеано в 1889 году.

Сложность выделения основных положений арифметики связана с простотой её начальных положений. Только в середине XIX века Грассман выбрал систему основных аксиом, определяющих сложение и умножение. Система позволяла вывести остальные положения арифметики как логическое следствие из аксиом. На основе аксиом были доказаны коммутативный, ассоциативный и дистрибутивный законы сложения и умножения, введено понятие дроби как пары целых чисел с определёнными законами сравнения и действий. Работа Грассмана была продолжена Пеано. Были и дальнейшие попытки приблизиться к полному теоретическому обоснованию арифметики натуральных чисел, в частности работы Гильберта, пока в 1932 году Гёдель не доказал теорему о неполноте.

Аналогичным образом были попытки дать теоретическое обоснование рациональным дробям, для которых выделялись две концепции: равные доли единицы или отношение двух однородных величин. Для рациональных дробей необходимо было доказать верность равенств a m b m = a b {displaystyle {frac {am}{bm}}={frac {a}{b}}} и a : m b : m = a b {displaystyle {frac {a:m}{b:m}}={frac {a}{b}}} ( m {displaystyle m} — натуральное число), которые использовались при сложении, вычитании и сокращении дробей. Равенство было тривиальным в теории отношений, но совсем не очевидным в независимой от неё концепции. Вместе с тем его просто считали верным. Арифметика дробей была обоснована Ж. Таннери в 1894 году, в его модели дроби представлялись парами целых чисел.

В 1758 году в «Первых основаниях арифметики, геометрии, плоской и сферической тригонометрии и перспективы» Кестнер выступил за обоснование всех арифметических понятий через целое число. Таким образом, он определил, в порядке следования в книге, натуральные числа, дроби, отрицательные числа, десятичные дроби, иррациональные числа и только затем теорию отношений. Операции над иррациональными числами стали исследовать, опираясь на их приближения рациональными дробями. При этом существование иррациональных чисел принималось заранее, а сами они трактовались как пределы последовательности рациональных чисел. Для иррациональных чисел пользовались определением Ньютона как отношения несоизмеримых величин (подобное определение дал и Эйлер). Аналогичным образом трактовал иррациональные числа П. А. Рахманов в «Новой теории содержания и пропорции геометрически соизмеримых и несоизмеримых количеств, и в последнем случае основанной на теории пределов». И только во второй половине XIX века появляются строгие теории действительного числа, сформулированные Мерэ, Кантором, Дедекиндом и Вейерштрассом.

В формировании теории отрицательных чисел основную проблему составляло утверждение, что отрицательное число меньше нуля, то есть меньше, чем ничего. Строгое определение отрицательных чисел отсутствовало, при этом были попытки сформулировать правила знаков («минус на плюс даёт минус» и «минус на минус даёт плюс»). Французский математик Карно в 1813 году писал: «Метафизика правила знаков при более глубоком изучении её обнаруживает, пожалуй, большие трудности, чем метафизика бесконечно малых количеств; это правило никогда не было доказано вполне удовлетворительным образом, и, по-видимому, оно даже не может быть доказано достаточно удовлетворительно». Первые попытки сформулировать теорию отрицательных чисел были сделаны в середине XIX века и принадлежат Гамильтону и Грассману.

Полное геометрическое толкование комплексных чисел было предложено Каспаром Весселем в «Опыте об аналитическом представлении направления и его применениях, преимущественно к решению плоских и сферических многоугольников» в 1799 году. Вессель хотел работать с направленными отрезками на плоскости с помощью алгебраических операций, но для вещественных чисел они позволяли только изменить направление на противоположное, а не задать произвольное направление. Вессель использовал основные единицы + 1 {displaystyle +1} , − 1 {displaystyle -1} , + ϵ {displaystyle +epsilon } , − ϵ {displaystyle -epsilon } и, используя правила умножения, заключил, что ϵ = − 1 {displaystyle epsilon ={sqrt {-1}}} . Работы Весселя оставались незамеченными около 100 лет. За это время своё толкование мнимых чисел представили Жан Робер Арган в 1813—1814 годах, Шайсс в 1831 году в «Теории биквадратичных вычетов», а также Гамильтон в 1832 году, который построил арифметическую теорию, рассматривая комплексные числа как пары действительных.

Вессель пытался обобщить теорию на трёхмерное пространство, но это ему не удалось. Вопрос оставался открытым до тех пор, пока Гамильтон не построил теорию кватернионов, при умножении которых не выполняется коммутативный закон. При этом исследования Вейерштрасса, Фробениуса и Пирса показали, что отказаться от какого-либо из арифметических законов придётся при любом расширении понятия числа за пределы комплексных чисел.

Словарь Ефремовой

арифметика

ж. Раздел математики, изучающий простейшие свойства чисел, способы их записи и действия над ними. Учебный предмет, содержащий основы данного раздела математики. разг. Учебник, излагающий содержание данного учебного предмета.

От трех яблочек до дедуктивных законов

Что поистине можно назвать армированным фундаментом всей науки – это законы арифметики. Еще в детстве все сталкиваются с арифметикой, изучая количество ножек и ручек у кукол, количество кубиков, яблочек и т. д. Так мы изучаем арифметику, которая дальше переходит в более сложные правила.

Вся наша жизнь знакомит нас с правилами арифметики, которые стали для простого человека наиболее полезными из всего, что дает наука. Изучение чисел — это «арифметика-малышка», которая знакомит человека с миром чисел в виде цифр еще в раннем детстве.

Высшая арифметика — дедуктивная наука, которая изучает законы арифметики. Большинство из них нам известно, хотя, возможно, мы и не знаем их точных формулировок.

Позиционные и непозиционные системы исчисления

Можно сказать, что числа – это математический язык, от удобства которого зависит многое. Существует множество систем исчисления, которые, как и алфавиты разных языков, отличаются между собой.

Рассмотрим системы счисления с точки зрения влияния позиции на количественное значение цифры на этой позиции. Так, например, римская система является непозиционной, где каждое число кодируется определенным набором специальных символов: I/ V/ X/L/ C/ D/ M. Они равны, соответственно, числам 1/ 5/10/50/100/500/1000. В такой системе цифра не изменяет своего количественного определения в зависимости от того, на какой она стоит позиции: первой, второй и т. д. Чтобы получить другие числа, нужно сложить базовые. Например:

  • DCC=700.
  • CCM=800.

Более привычная для нас система счисления с использованием арабских цифр является позиционной. В такой системе разряд числа определяет количество цифр, например, трехразрядные числа: 333, 567 и т.д. Вес любого разряда зависит от позиции, на которой находится та или иная цифра, например цифра 8 на второй позиции имеет значение 80. Это характерно для десятичной системы, существуют и другие позиционные системы, например двоичная.

Уроки арифметики

Уроки арифметики – школьные уроки, вплоть до шестого класса. Дальше математика открывает свои разделы: геометрия и алгебра, а позже и тригонометрия.

Подробно об операциях вы можете прочитать в наших статьях:

  1. сложение

  2. вычитание

  3. умножение

  4. деление

Исторический очерк

См. также основную статью: История арифметики

Арифметика в Средневековье

Файл:Indian numerals 100AD.svg

Индийские цифры (I век н. э.) и соответствующие им современные цифры

Позиционная система счисления (десять цифр, включая ноль) была введена в Индии. Она позволила разработать сравнительно простые правила выполнения арифметических операций[5]. Основными арифметическими действиями в Индии считались сложение, вычитание, умножение, деление, возведение в квадрат и куб, извлечение квадратных и кубических корней, для которых были разработаны правила. Вычисления проводились на счётной доске с песком или пылью или просто на земле и записывались палочкойШаблон:Sfn. Индийцы знали дроби и умели совершать операции над ними, пропорции, прогрессииШаблон:Sfn. Уже с VII века н. э. они пользовались отрицательными числами, интерпретируя их как долг, а также иррациональными числамиШаблон:Sfn.

В начале IX века Мухаммед ибн-Муса ал-Хорезми написал книгу «Об индийском счёте». Учебник содержал решения практических задач «различного рода и сорта» и был первой книгой, написанной с использованием позиционной системы счисления, до этого цифрами пользовались только для вычислений на счётной доскеШаблон:SfnШаблон:Sfn. В XII веке Аделардом и Иоанном Севельским были сделаны два перевода книги на латинский языкШаблон:Sfn. Её оригинал не сохранился, но в 1857 году под названием «Алхорезми об индийском числе» был издан найденный латинский переводШаблон:Sfn. В трактате описывается выполнение с помощью индийских цифр на счётной доске таких арифметических действий, как сложение, вычитание, удвоение, умножение, раздвоение, деление и извлечение квадратного корняШаблон:Sfn. Умножение дробей, как и деление, рассматривалось с помощью пропорций: Через Испанию  и Сицилию  в X веке начали завязыва умножить на Через Испанию  и Сицилию  в X веке начали завязыва было равносильно поиску такого Через Испанию  и Сицилию  в X веке начали завязыва, что Шаблон:Sfn. Данная теория являлась основой арабской арифметики. Однако при этом существовало и другое исчисление дробей, представлявшее любую дробь в виде суммы аликвотных дробейШаблон:Sfn. Для решения задач арабы пользовались тройным правилом, пришедшим из Индии и описанным наряду с рядом других приёмов в «Книге об индийских рашиках» аль-Бируни, правилом двух ложных положений, пришедшим из Китая и получившим теоретическое обоснование в «Книге о правиле двойного ложного положения» Кусты ибн ЛуккиШаблон:Sfn.

Через Испанию и Сицилию в X веке начали завязываться научные связи Европы с арабским миром. В это время Каталонию посетил учёный монах Герберт, ставший позднее папой Сильвестром II. Ему приписывают такие сочинения, как «Книжка о делении чисел» и «Правила счёта на абаке». В обеих книгах числа написаны словами или римскими цифрамиШаблон:Sfn. Герберт называл вычислителей на абаке «абацистами». В XII—XIII веках в Европе появились латинские переводы арабских книг по арифметике. Приверженцы представленной в книгах десятичной позиционной нумерации стали называться «алгористами» по имени арабского математика ал-Хорезми в латинской формеШаблон:Sfn. В начале XIII века в Западной Европе существовали две системы счисления: старая, основанная на абаке и поддерживаемая Гербертом, и новая, позиционная индийская система, поддерживаемая Леонардо Фибоначчи. Постепенно новая система взяла верхШаблон:SfnШаблон:Sfn. Основным её преимуществом является упрощение арифметических операций. Вместе с тем в Германии, Франции и Англии новые цифры не употреблялись до конца XV века. Более полное вытеснение старой нумерации произошло только в XVI—XVII векахШаблон:Sfn.

В 1427 году ал-Каши описал систему десятичных дробей, которая получила повсеместное распространение после сочинений Стевина в 1585 году[5]. Стевин хотел как можно шире распространить десятичную систему. Именно поэтому он написал свои сочинения на французском и фламандском языках, а не на латыни. Кроме того, он стал энергичным поборником введения десятичной системы мерШаблон:Sfn.

Логарифмы

К началу 17 в. сложность прикладных вычислительных задач возросла настолько, что справиться с ними «вручную» не представлялось возможным из-за слишком больших затрат труда и времени. К счастью, вовремя изобретенные Дж.Непером в начале 17 в. логарифмы позволили справиться с возникшей было проблемой. Так как теория и приложения логарифмов подробно изложены в специальной статье ЛОГАРИФМ, мы ограничимся лишь самыми необходимыми сведениями.

Можно показать, что если n – положительное действительное число, то существует единственное положительное действительное число x, такое, что 10x = n. Число x называется (обычным или десятичным) логарифмом числа n; условно это записывается так: x = log n. Таким образом, логарифм – это показатель степени, и из законов действий с показателями следует, что

Именно этими свойствами логарифмов объясняется их широкое использование в арифметике. Первое и второе свойства позволяют свести любую задачу на умножение и деление к более простой задаче на сложение и вычитание. Третье и четвертое свойства дают возможность свести возведение в степень и извлечение корня к гораздо более простым действием: умножению и делению.

Для удобства использования логарифмов были составлены их таблицы. Для составления таблицы десятичных логарифмов достаточно включить в них только логарифмы чисел от 1 до 10. Например, так как 247,6 = 102ґ2,476, имеем: log247,6 = log102 + log2,476 = 2 + log2,476, а так как 0,02476 = 10–2ґ2,476, то log0,02476 = log10–2 + log2,476 = –2 + log2,476. Заметим, что десятичный логарифм числа, заключенного в интервале от 1 до 10, лежит в интервале от 0 до 1 и может быть записан в виде десятичной дроби. Отсюда следует, что десятичный логарифм любого числа есть сумма целого числа, называемого характеристикой логарифма, и десятичной дроби, называемой мантиссой логарифма. Характеристику логарифма любого числа можно найти «в уме»; мантиссу же следует находить по таблицам логарифмов. Например, из таблиц мы находим, что log2,476 = 0,39375, откуда log247,63 = 2,39375. Если характеристика логарифма отрицательна (когда число меньше единицы), то ее удобно представить в виде разности двух положительных целых чисел, например, log0,02476 = –2 + 0,39375 = 8,39375 – 10. Следующие примеры поясняют этот прием.

Чтобы найти произведение

x = 41,639ґ159,28ґ0,0037456,

мы по пятизначным таблицам логарифмов находим нужные мантиссы 0,61950; 0,20216 и 0,57352. Соответственно, логарифмы множителей равны

Складывая их, получаем

Еще один пример. Чтобы найти x, мы находим, что log0,68317 = 9,83453 – 10. Так как для нахождения кубического корня, необходимо разделить полученное значение логарифма на 3, удобнее представить логарифм в виде 29,83453 – 30. Тогда log x = (1/3)log0,68317 = 9,94484 – 10; x = 0,88072.

Так как log n в общем случае – число иррациональное, в таблицах приводятся значения логарифмов с определенным числом десятичных знаков, и можно выбрать те из них, которые лучше всего соответствуют решаемой задаче. До появления современных компьютеров практически все длинные и сложные вычисления выполнялись с помощью таблиц логарифмов.

Теги

Adblock
detector